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1 Forces on Vortices

After �nding the force exerted by one vortex on another it is possible to calculate

the force exerted on a single vortex by a transport current
−→
J . This situation

arises, for example, in a high �eld magnet when the �eld created by the current
enters the superconducting wire. Imagine an in�nite line of parallel vortices and
look at the net current produced by all the vortices at a point some perpendicu-
lar distance away. All of those current contributions will super-impose to create
a current �owing parallel to the line. Placing a test vortex there will create a
net force which is given by,−→
f =

−→
J × Φ0ẑ.

Again the vortex will move perpendicular to the applied current in a Lorentz
force-like manner. As the vortex moves there is a time-rate-of-change of the

magnetic �eld. By Faraday's law this ∂
−→
B/∂t gives rise to an electric �eld as

5×
−→
E = −∂

−→
B/∂t. If the �ux is out of the page and the current is �owing from

left to right, the force exerted on the vortex is downward. As the vortex moves

−∂
−→
B/∂t points out of the page at the instantaneous location of the vortex and

−∂
−→
B/∂t points in to the page just below there in the direction of motion. These

contributions both give an electric �eld pointing to the right, in the direction of
the current. This will produce Ohmic losses in the normal core of the vortex,
resulting in dissipation as the vortex moves. The superconductor now has a
non-zero dc resistance. Finding ways to prevent the vortices from moving un-
der such circumstances is essential to restore the zero-resistance properties of
superconductors in a magnetic �eld. This is the subject of "vortex pinning".

Now imagine a collection of vortices being acted upon by a uniform current−→
J . As the vortices move the electric �eld induced is given by

−→
E =

−→
B × −→v v,

where −→v v is the vortex velocity. This electric �eld is parallel to
−→
J . Write the

magnetic �ux density as |
−→
B | = nvΦ0, where nv is the number of vortices per

unit area. Energy will be dissipated at a rate of W =
−→
J ·
−→
E .
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Where does the dissipated energy go? The Bardeen-Stephen model says that
it is dissipated by inducing currents in the normal core of the vortex. The power
dissipated by a single vortex is

(
πa2Lz

)
ρnJ

2, where a is the radius of the vortex
core, Lz is the length of the vortex in the superconductor, ρn is the resistivity of
the electron �uid in the vortex core, often taken to be the normal state resistiv-
ity of the metal. The power dissipated in the entire sample is

(
πa2Lz

)
ρnJ

2nvA,
where A is the area of the sample. Finally, the power dissipated per unit vol-
ume of the sample is πa2ρnJ

2nv. Equating this to W = JE yields an ex-
pression for the �ux-�ow resistivity: E = ρffJ , with ρff = πa2ρn

B
Φ0

. Recall

that µ0Hc2 = Φ0

2πξ2GL
, so taking a ≈ ξGL gives ρff ≈ ρn

B
Bc2

. Hence the �ux

�ow resistivity is the normal state resistivity times the fractional coverage of
the sample with vortex cores. This prediction for the magneto-resistance of a
superconductor is in generally good agreement with data for low-temperature
superconductors, as shown on the class web site.

The �ux �ow resistivity can be associated with a vortex viscous force. Solv-
ing for the vortex velocity in terms of the �ux �ow resistivity above yields
vv = ρnJ/Bc2. The fact that the vortex velocity scales with the applied cur-
rent implies an equilibrium between a driving force and a dissipative force. We

call this latter force the viscous drag force on the vortex,
−→
f drag = −η−→v v with

η = JΦ0

vv
, or η = Φ0

ρn
Bc2.

The equation of motion for a single vortex acted upon by a current is then−→
J × Φ0ẑ − η−→v v +

−→
F pin = 0, where

−→
F pin is the pinning force on the vortex.

2 Vortex Pinning

Any region in space where the magnitude of the superconducting order param-
eter is reduced is a potential pinning site. If there is a region with |ψ| = 0
of length Dz, then the free energy gain of locating the vortex core there is

∆F0 =
µ0H

2
c

2 πξ2
GLDz. Removing the vortex core from this location requires a

�nite energy. As long as the vortex is stationary in the presence of a current
there will be no energy dissipation. This means that the superconductor has a
new kind of critical current, dictated by the strength of the vortex pinning.
Pinning can be thought of as creating a Hooke's law restoring force for the vor-

tex as
−→
F pin = −k(−→x − −→x 0). The �ne art of vortex pinning is to make the

superconductor in to "Swiss cheese" by suppressing the order parameter in lim-
ited cylindrical regions to pin the cores, but leaving the remainder un-touched
so that it can support the screening currents. In this way one can have a zero
resistance state in high magnetic �eld in the presence of a transport current,
but only up to a point in either temperature, current or magnetic �eld.
Low-Tc superconductors can display "collective pinning" if they have a suf-
�ciently rigid vortex lattice structure. In this case, pinning a single vortex
e�ectively pins the entire lattice.
One can also have the phenomenon of Thermally-Assisted Flux Flow (TAFF)
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in which vortices move between di�erent pinning sites in a disordered pinning
landscape due to thermally-activated motion.

3 The Josephson E�ect

Josephson tunneling of Cooper pairs takes place between two superconductors
separated by a "weak link" in which the order parameter is suppressed. Many
varieties of weak links exist, but it is easiest to do the calculation for the case
of an insulating barrier between the two superconductors (SIS tunneling).
The superconductors have macroscopic quantum wavefunctions given by Ψ1 =√
n∗1e

iθ1 and Ψ2 =
√
n∗2e

iθ2 , and the barrier between them has thickness 2a.
Start with the time-independent Schrodinger equation for Ψ and the equation
for the the current:
Λ
−→
J s(
−→r , t) = ~

e∗
−→
5θ −

−→
A (−→r , t) with Ψ(−→r , t) =

√
n∗eiθ(

−→r ,t).
Make two assumptions:
1) The junction area is small so that the current density is uniform across the
junction. In other words the area is small compared to λ2

eff . This makes the
problem one-dimensional.

2) Take the magnetic
−→
A = 0 and electric φ = 0 �elds to be zero. These will be

added back in later.

One now has a standard quantum barrier tunneling problem with solution

Js = − e∗~
m∗ζ

√
n∗1n

∗
2

2 sinh(2a/ζ) sin(θ1 − θ2),

where ζ2 = ~2

2m∗(V0−E) , and V0 − E is the barrier height. The prefactor is the

critical current density of the junction,

Jc = e∗~
m∗ζ

√
n∗1n

∗
2

2 sinh(2a/ζ) and depends on the geometry of the junction as well as the

superconductors involved. For thick insulators this reduces to,

Jc = e∗~
m∗ζ

√
n∗1n

∗
2

2 e−2a/ζ .
The exponential dependence of critical current on barrier thickness and height
makes it extremely di�cult to make large numbers of Josephson junctions with
identical properties, a necessary requirement for applications such as large-scale
computing.
The critical current will have the same temperature dependence as the super-
�uid: Jc(T ) ∝ ns(T ) as T → Tc.
This result also suggests that the Josephson current-phase relationship is sin(θ1−
θ2), which is found to be correct in many low-Tc Josephson junctions (JJs), but
deviations from this simple sinusoidal dependence are seen in disordered d-wave
JJs, as illustrated on the class web site.

Bardeen and Josephson had a fundamental disagreement about Cooper pair
tunneling through an insulating barrier. Bardeen (using the BCS k-space pic-
ture) believed that since Vk,k′ = 0 in the insulator, there could be no support
for Cooper pairs and therefore such tunneling was incoherent. If the tunneling
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probability for a single particle is t (with t << 1) then the tunneling probability
for a Cooper pair is t2, and therefore will be swamped by quasiparticle tunnel-
ing. Josephson was following the work on generalization of BCS to real space,
where it was predicted that the pair potential ∆(r) was non-zero in the insula-
tor. Therefore he wrote down a tunneling Hamiltonian in which pair tunneling
swamped the quasiparticle tunneling. Josephson turned out to be correct, and
he won the Nobel prize in physics the year after BCS did for their theory of
superconductivity.
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